本篇文章給大家談談測繪數學知識點總結高中,以及工程測量學知識點總結對應的知識點,希望對各位有所幫助,不要忘了收藏本站喔。
目錄一覽:
測繪有什么基礎知識
測繪工程有很多方向
在所有方向的基礎知識中,最重要的就是計算機和數學,也就是說要學好高等數學,線性代數,概率論,武漢大學還有計算 *** 等課程;而計算機就要求學好c語言,數據庫等課程,更好還掌握第二語言,現在流行的是c#
另外有一個方向叫固體地球物理除以上課程外,對物理也有一定要求,主要是為以后的專業課,重力學打好基礎。測量平差
除以上這一類型的基礎知識以外,還需掌握地圖學,測量學,測量平差理論等專業基礎知識
添加微信好友, 獲取更多信息
復制微信號
高中數學知識點大全
有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!
高中數學知識點
1、基本初等函數
指數、對數、冪函數三大函數的運算性質及圖像
函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關于這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。
函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對于冪函數還要搞清楚當指數冪大于一和小于一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。
2、函數的應用
這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關于證明零點的 *** ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明 *** 都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。
4、點、直線、平面之間的位置關系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。
關于這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
5、圓與方程
能熟練地把一般式方程轉化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數
考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恒等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。
8、三角恒等變換
這一章公式特別多,像差倍半角公式這類內容常會出現,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規律的,記憶的時候可以 *** 三角函數去記。
9、解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
10、數列
等差、等比數列的通項公式、前n項及一些性質常出現于填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到后要帶有目的的去推導就沒問題了。
11、不等式
這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然后再根據實際問題的限制要求來求最值。
高中數學公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1_X2=c/a 注:韋達定理
判別式
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac0 注:方程有兩個不等的實根
b2-4ac0 注:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側面積 S=c_h 斜棱柱側面積 S=c'_h
正棱錐側面積 S=1/2c_h' 正棱臺側面積 S=1/2(c+c')h'
圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2
圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l
弧長公式 l=a_r a是圓心角的弧度數r 0 扇形面積公式 s=1/2_l_r
錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s_h 圓柱體 V=pi_r2h
高考前數學知識點 總結
選擇填空題
1、易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如 *** 題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2、答題 *** :
選擇題十大速解 *** :
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解 *** :直接法、特殊化法、數形結合法、等價轉化法。
解答題
專題一、三角變換與三角函數的性質問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
2、構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
專題三、數列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
2、構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定 *** :根據數列表達式的結構特征確定求和 *** (如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,并用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特征點坐標。
③求向量:求直線的方向向量或平面的'法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變量表示目標變量,代入不等關系式。
③得范圍:通過求解含目標變量的不等式,得所求參數的范圍。
④再回顧:注意目標變量的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。
專題七、離散型隨機變量的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
2、構建答題模板
①定元:根據已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
專題八、函數的單調性、極值、最值問題
1、解題路線圖
(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。
2、構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,并列出表格。
④得結論:從表格觀察f(x)的單調性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。
以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的“套路”。
高中數學 學習心得
數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由于高中數學對知識的難度、深度、廣度要求更高,有一部分同學由于不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:“我在初中時數學成績很好,可現在怎么了?”其實,學習是一個不斷接收新知識的過程。正是由于你在進入高中后 學習 *** 或 學習態度 的影響,才會造成學得累死而成績不好的后果。那么,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。
一、 認清學習的能力狀態。
1、 心理素質。我們在高中學習環境下取決于我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇于正視自己,及時作出總結教訓,改變學習 *** 。
2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以后,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙于記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙于記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙于套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些“自我感覺良好”的同學,忽視基礎知識、基本技能和基本 *** ,不能牢牢地抓住課本,而是偏重于對難題的攻解,好高騖遠,重“量”而輕“質”,陷入題海,往往在考試中不是演算錯誤就是中途“卡殼”。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴于老師解說的心理,做作業不講究效率,學習效率不高。
二、 努力提高自己的學習能力。
1、 抓要點提高學習效率。(1) 抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,并將前后知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對于那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鐘課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望于課外去補,則會使學習效率大打折扣。
高中數學知識點大全相關 文章 :
★ 高二數學知識點總結
★ 高一數學必修一知識點匯總
★ 高中數學學習 *** :知識點總結最全版
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高三數學知識點考點總結大全
★ 高中數學基礎知識大全
★ 高三數學知識點梳理匯總
★ 高中數學必考知識點歸納整理
★ 高一數學知識點總結期末必備
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
高二數學重要知識點總結大全
大家對知識點應該都不陌生吧?知識點是知識中的最小單位,更具體的內容,有時候也叫“考點”。掌握知識點是我們提高成績的關鍵!下面是我給大家帶來的數學重要知識點 總結 大全,以供大家參考!
高二數學 重要知識點總結大全
一、導數的應用
1、用導數研究函數的最值
確定函數在其確定的定義域內可導(通常為開區間),求出導函數在定義域內的零點,研究在零點左、右的函數的單調性,若左增,右減,則在該零點處,函數去極大值;若左邊減少,右邊增加,則該零點處函數取極小值。
學習了如何用導數研究函數的最值之后,可以做一個有關導數和函數的綜合題來檢驗下學習成果。
2、生活中常見的函數優化問題
1)費用、成本最省問題
2)利潤、收益更大問題
3)面積、體積最(大)問題
二、推理與證明
1、歸納推理:歸納推理是高二數學的一個重點內容,其難點就是有部分結論得到一般結論,的 *** 是充分考慮部分結論提供的信息,從中發現一般規律;類比推理的難點是發現兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,的 *** 是利用已經掌握的數學知識,分析兩類對象之間的關系,通過兩類對象已知的相似特征得出所需要的相似特征。
2、類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。
三、不等式
對于含有參數的一元二次不等式解的討論
1)二次項系數:如果二次項系數含有字母,要分二次項系數是正數、零和負數三種情況進行討論。
2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的 *** 求出來,則根據這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的 *** 求出來,則根據方程的判別式進行分類討論。
通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。
四、坐標平面上的直線
1、內容要目:直線的點方向式方程、直線的點法向式方程、點斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點到直線的距離,兩直線的夾角以及兩平行線之間的距離。
2、基本要求:掌握求直線的 *** ,熟練轉化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點與直線、直線與直線的不同位置,能正確求點到直線的距離、兩直線的交點坐標及兩直線的夾角大小。
3、重難點:初步建立代數 *** 解決幾何問題的觀念,正確將幾何條件與代數表示進行轉化,定量地研究點與直線、直線與直線的位置關系。根據兩個獨立條件求出直線方程。熟練運用待定系數法。
五、圓錐曲線
1、內容要目:直角坐標系中,曲線C是方程F(x,y)=0的曲線及方程F(x,y)=0是曲線C的方程,圓的標準方程及圓的一般方程。橢圓、雙曲線、拋物線的標準方程及它們的性質。
2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數 *** 判斷定點是否在曲線
上及求曲線的交點。掌握圓、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本 *** 。求曲線的交點之間的距離及交點的中點坐標。利用直線和圓、圓和圓的位置關系的幾何判定,確定它們的位置關系并利用解析法解決相應的幾何問題。
3、重難點:建立數形結合的概念,理解曲線與方程的對應關系,掌握代數研究幾何的 *** ,掌握把已知條件轉化為等價的代數表示,通過代數 *** 解決幾何問題。
高二上冊數學必修一知識點歸納
1.機械振動:機械振動是指物體在平衡位置附近所做的往復運動.
2.回復力:回復力是指振動物體所受到的指向平衡位置的力,是由作用效果來命名的.回復力的作用效果總是將物體拉回平衡位置,從而使物體圍繞平衡位置做周期性的往復運動。回復力是由振動物體所受力的合力(如彈簧振子)沿振動方向的分力(如單擺)提供的,這就是回復力的來源。
3.平衡位置:平衡位置是指物體在振動中所受的回復力為零的位置,此時振子未必一定處于平衡狀態.比如單擺經過平衡位置時,雖然回復力為零,但合外力并不為零,還有向心力.
4.描述振動的物理量:
①位移總是相對于平衡位置而言的,方向總是由平衡位置指向振子所在的位置—總是背離平衡位置向外;
②振幅是物體離開平衡位置的距離,它描述的是振動的強弱,振幅是標量;
③頻率是單位時間內完成全振動的次數;
④相位用來描述振子振動的步調。如果振動的振動情況完全相反,則振動步調相反,為反相位.
5.簡諧運動:
A、簡諧運動的回復力和位移的變化規律;
B、單擺的周期。由本身性質決定的周期叫固有周期,與擺球的質量、振幅(振動的總能量)無關。
6.簡諧運動的表達式和圖象:x=Asin(ωt+φ0)簡諧運動的圖象描述的是一個質點做簡諧運動時,在不同時刻的位移,因而振動圖象反映了振子的運動規律(注意:振動圖象不是運動軌跡)。由振動圖象還可以確定振子某時刻的振動方向.
7.簡諧運動的能量:不計摩擦和空氣阻力的振動是理想化的振動,此時系統只有重力或彈力做功,機械能守恒。振動的能量和振幅有關,振幅越大,振動的能量越大。
高中數學知識點整理
空間兩條直線只有三種位置關系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
2、若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;
(2)沒有公共點——平行或異面
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內、與平 面相 交、與平面平行
①直線在平面內——有無數個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
高二數學重要知識點總結大全相關 文章 :
★ 2020高二數學知識點總結
★ 高二數學重要知識點歸納
★ 高二數學知識點總結(人教版)
★ 高二數學必背知識點總結
★ 高二數學知識點總結
★ 高二數學考點知識點總結復習大綱
★ 高二數學知識點總結歸納
★ 高二數學知識點大全
★ 高二數學知識的重點要點的總結
★ 高二數學知識點總結2020
高中數學平面解析幾何知識點歸納
高中數學平面解析幾何知識點有哪些你知道嗎?近年的高中數學解答題多呈現為多問漸難式的“梯度題”,解答時不必一氣審到底,應走一步解決一步,一起來看看高中數學平面解析幾何知識點,歡迎查閱!
目錄
高中數學平面解析幾何知識點
平面解析幾何基本理論
高中數學平面幾何解析
高中數學平面幾何的學習技巧
高中數學平面解析幾何知識點
平面解析幾何初步:
①直線與方程是解析幾何的基礎,是高考重點考查的內容,單獨考查多以選擇題、填空題出現;間接考查則以直線與圓、橢圓、雙曲線、拋物線等知識綜合為主,多為中、高難度試題,往往作為把關題出現在高考題目中。直接考查主要考查直線的傾斜角、直線方程,兩直線的位置關系,點到直線的距離,對稱問題等,間接考查一定會出現在高考試卷中,主要考查直線與圓錐曲線的綜合問題。
②圓的問題主要涉及圓的方程、直線與圓的位置關系、圓與圓的位置關系以及圓的' *** 性質的討論,難度中等或偏易,多以選擇題、填空題的形式出現,其中 熱點 為圓的切線問題。③空間直角坐標系是平面直角坐標系在空間的推廣,在解決空間問題中具有重要的作業,空間向量的坐標運算就是在空間直角坐標系下實現的。空間直角坐標系也是解答立體幾何問題的重要工具,一般是與空間向量在坐標運算結合起來運用,也不排除出現考查基礎知識的選擇題和填空題。
高中數學平面解析幾何知識點
平面解析幾何,又稱解析幾何(英語:Analytic geometry)、坐標幾何(英語:Coordinate geometry)或卡氏幾何(英語:Cartesian geometry),早先被叫作笛卡兒幾何,是一種借助于解析式進行圖形研究的幾何學分支。解析幾何通常使用二維的平面直角坐標系研究直線、圓、圓錐曲線、擺線、星形線等各種一般平面曲線,使用三維的空間直角坐標系來研究平面、球等各種一般空間曲面,同時研究它們的方程,并定義一些圖形的概念和參數。
平面解析幾何基本理論
坐標
在解析幾何當中,平面給出了坐標系,即每個點都有對應的一對實數坐標。最常見的是笛卡兒坐標系,其中,每個點都有x-坐標對應水平位置,和y-坐標對應垂直位置。這些常寫為有序對(x,y)。這種系統也可以被用在三維幾何當中,空間中的每個點都以多元組呈現(x,y,z)。坐標系也以 其它 形式出現。在平面中最常見的另類坐標系是極坐標系,其中每個點都以從原點出發的半徑r和角度θ表示。在三維空間中,最常見的另類坐標系統是圓柱坐標系和球坐標系。
曲線方程
在解析幾何當中,任何方程都包含確定面的子集,即方程的解集。例如,方程y=x在平面上對應的是所有x-坐標等于y-坐標的解集。這些點匯集成為一條直線,y=x被稱為這道方程的直線。總而言之,線性方程中x和y定義線,一元二次方程定義圓錐曲線,更復雜的方程則闡述更復雜的形象。通常,一個簡單的方程對應平面上的一條曲線。但這不一定如此:方程x=x對應整個平面,方程x2+y2=0只對應(0,0)一點。在三維空間中,一個方程通常對應一個曲面,而曲線常常代表兩個曲面的交集,或一條參數方程。方程x2+y2=r代表了是半徑為r且圓心在(0,0)上的所有圓。
距離和角度
在解析幾何當中,距離、角度等幾何概念是用公式來表達的。這些定義與背后的歐幾里得幾何所蘊含的主旨相符。例如,使用平面笛卡兒坐標系時,兩點A(x1,y1),B(x2,y2)之間的距離d(又寫作|AB|被定義為
上述可被認為是一種勾股定理的形式。類似地,直線與水平線所成的角可以定義為
其中m是線的斜率。
變化
變化可以使母方程變為新方程,但保持原有的特性。
交集
主題問題編輯解析幾何中的重要問題:
向量空間
平面的定義
距離問題
點積求兩個向量的角度
外積求一向量垂直于兩個已知向量(以及它們的空間體積)
高中數學平面幾何解析
平面解析幾何基本理論
平面解析幾何初步綜合檢測
高中數學平面幾
1圓的知識應用
圓的方程有這兩個表達方式,
(1)圓的標準方程:(x-a)2+(y-b)2=r2,其中(a,b)是圓心坐標,r是圓的半徑。
(2)圓的一般方程:x2+y2+Dx+Ey+F=0(D2+E2+4F0),圓心坐標為:(-2/D,-2/E),半徑為:r=。
例:設f(x)=(x-2005)(x+2006)的圖像與坐標有三個交點A、B、C,則過圓與坐標軸的另一交點D坐標為多少?我們可以進行如下分析:
若求得函數f(x)=(x-2005)(x+2006)與坐標軸的交點A(2005,0)B(-2006,0),C(0,-2005×2006),然后求出A、B、C三點的圓的方程,最后求圓與坐標軸的另一交點顯然運算量過大,若考慮過三點A、B、C的圓與O點的關系,設另一交點D,則可借助相交弦定理:|OA|·|OB|=|OC|·|OD|,可以得到2005×2006=2005×2006·|OD|,則|OD|=1,因此D點的坐標為(0,1),因此在做題時應當注意思維的發散運用。
3.2雙曲線的知識應用
由雙曲線的標準方程為:
(1)-=1(a1,b0)焦點為(±c,0)
(2)-=1(a0,b0)焦點為(0,±c)
A、b、c的關系為:c2=a2+b2
雙曲線的漸近線方程:y=±x
例:已知雙曲線-=1(a1,b0)的左右焦點分別為F1、F2,點P在雙曲線的右支上,且|PF1|=|PF2|。求雙曲線離心率e的更大值,并寫出此時雙曲線的漸近線方程。我們可以這樣考慮:
由|PF1|=3|PF2|,|PF1|-|PF2|=2a得到|PF2|=a,c-a≤|PF2|,則c≤2a,所以e=≤2,當e取更大值2時,==
所以雙曲線的漸近線方程為:y=±
3.3線性關系證明應用
如下圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F,證明∠DEN=∠F。分析如下:
以M為原點,AB為X軸,以垂直方向線段為Y軸建立坐標系,可以把CD看做是圓周上的動點,設AD=BC=r,則C點可以看做是以B為圓心,r為半徑的圓周上的動點,D點同樣對待,這樣我們就可以得到:
C(rcosθ,rsinθ)、D(-a+rcosφ,rsinφ),由此可得,
N(,)所以=tan
從而證明出∠DEN=∠F。
何的學習技巧
高中數學平面幾何的學習技巧
幾何學被廣泛應用在科學研究和生活建筑的各個方面,要學好平面幾何,可以從以下幾個方面把握相關技巧:
之一,在概念和定理的學習中,概念要學會轉化成幾何語言來表述,定理要分清適用條件和適用圖形。例如一個簡單的例子,對于線段中點的定義,我們可以轉化成這樣的幾何方式:點A、B、C在同一直線上,由于AC=BC,所以C點是線段中點,我們還可以倒過來想,若C是中點,可以得到2AC=2BC=AB,這樣我們就能清楚地看到其包含的計算關系。
第二,在例題和練習題的學習中,例題能夠促進課文中基本概念、定理等基礎知識的掌握,練習題則可以考驗學生對其運用的靈活度,若能有效地進行練習,就能達到舉一反三的效果。
知識點歸納相關 文章 :
★ 高中數學復習 *** 及解析幾何知識點整理
★ 高中數學必考知識點歸納整理
★ 怎樣學習高中數學平面解析幾何怎樣才最有效
★ 高一數學解析幾何題答題全攻略
★ 高中數學必考知識點歸納
★ 高考數學知識點歸納整理
★ 高中數學考點整理歸納
★ 高中數學知識點總結
★ 高考數學知識點整理
★ 高考數學復習知識點整理
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
測繪專業平差基礎需要的數學知識
測繪工程與數學關系聯系還是比較緊密的。。。高等數學,線性代數,概率論等都用得上,工程測量上常用些簡單的坐標計算(這里面就經常用到三角函數)那是最基本的,像有時用到些極坐標也得了解,如果深研究的話,工程測量及控制測量里很多公式都要有很強的數學功底才能弄懂的,還有像攝影測量,數字攝影測量里還涉及很多算法,非常復雜,測量平差里前面最主要的是先弄懂線性代數里的矩陣是怎么回事,一些性質及算法更好也了解一點,到后面還會用上概率論里的假設檢驗等知識。。。
總之,要想真正學好測繪工程,數學知識必須過關,望好好努力。。。
關于測繪數學知識點總結高中和工程測量學知識點總結的介紹到此就結束了,不知道你從中找到你需要的信息了嗎 ?如果你還想了解更多這方面的信息,記得收藏關注本站。