今天給各位分享測繪數學知識點歸納高中的知識,其中也會對測繪基本知識要點進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!
目錄一覽:
高二數學重點知識點歸納
總結 是事后對某一時期、某一項目或某些工作進行回顧和分析,從而做出帶有規律性的結論,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,一起來學習寫總結吧。你想知道總結怎么寫嗎?下面是我給大家帶來的 高二數學 重點知識點歸納,以供大家參考!
高二數學重點知識點歸納
之一章: *** 和函數的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是 *** 的韋恩圖,會畫圖, *** 的“并、補、交、非”也就解決了,還有函數的定義域和函數的單調性、增減性的概念,這些都是函數的基礎而且不難理解。在之一輪復習中一定要反復去記這些概念,的 *** 是寫在 筆記本 上,每天至少看上一遍。
第二章:基本初等函數:指數、對數、冪函數三大函數的運算性質及圖像。函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關于這三大函數的運算公式,多記多用,多做一點練習基本就沒多大問題。函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對于冪函數還要搞清楚當指數冪大于一和小于一時圖像的不同及函數值的大小關系,這也是常考常錯點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化問題也要了解清楚。
添加微信好友, 獲取更多信息
復制微信號
第三章:函數的應用。主要就是函數與方程的結合。其實就是的實根,即函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間的靈活轉化,以求能最簡單的解決問題。關于證明零點的 *** ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明 *** 都要記得,多練習強化。這二次函數的零點的Δ判別法,這個倒不算難。
高中數學知識點總結
1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1 ……(檢驗方程的解)。
4.列一元一次方程解應用題:
(1)讀題分析法:多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程。
(2)畫圖分析法:多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;
(5)商品價格問題:售價=定價·折·,利潤=售價—成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,
S正方形=a2,S環形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。
本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想 *** 。
高二數學知識點摘要
1.函數的奇偶性。
(1)若f(x)是偶函數,那么f(x)=f(-x)。
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數)。
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0)。
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性。
(5)奇函數在對稱的單調區間內有相同的單調性;偶函數在對稱的單調區間內有相反的單調性。
2.復合函數的有關問題。
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的`定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優先的原則。
(2)復合函數的單調性由“同增異減”判定。
3.函數圖像(或方程曲線的對稱性)。
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上。
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然。
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0)。
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0。
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱。
4.函數的周期性。
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,則y=f(x)是周期為2a的周期函數。
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2|a|的周期函數。
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4|a|的周期函數。
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數。
5.判斷對應是否為映射時,抓住兩點。
(1)A中元素必須都有象且。
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象。
6.能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
高二數學重點知識點歸納相關 文章 :
★ 高二數學各類考試的知識點總結
★ 高二數學知識的重點要點的總結
★ 高二數學考點知識點總結復習大綱
★ 高二數學知識點歸納總結
★ 高二數學考試必考知識點
★ 高二數學文科重點知識點總結
★ 高二數學知識點歸納小總結
★ 高二數學知識點總結
★ 高二數學知識點歸納
高中數學知識點全總結最全版
高中數學知識點全 總結 最全版有哪些?高中數學小題一般是信息量少、運算量小,易于把握,不要輕易放過,應爭取在大題之前盡快解決,一起來看看高中數學知識點全總結最全版,歡迎查閱!
目錄
高中數學重點知識點
高考數學常考知識點
高中數學重點知識點講解
高中數學重點知識點
1.有理數:
(1)凡能寫成形式的數,都是有理數,整數和分數統稱有理數.
注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;?不是有理數;
(2)有理數的分類:①②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)自然數?0和正整數;a0?a是正數;a0?a是負數;
a≥0?a是正數或0?a是非負數;a≤0?a是負數或0?a是非正數.
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)相反數的和為0?a+b=0?a、b互為相反數.
(4)相反數的商為-1.
(5)相反數的絕對值相等
4.絕對值:
(1)正數的絕對值等于它本身,0的絕對值是0,負數的絕對值等于它的相反數;
注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;
(3)
(4)|a|是重要的非負數,即|a|≥0;
5.有理數比大小:
(1)正數永遠比0大,負數永遠比0小;
(2)正數大于一切負數;
(3)兩個負數比較,絕對值大的反而小;
(4)數軸上的兩個數,右邊的數總比左邊的數大;
(5)-1,-2,+1,+4,-0.5,以上數據表示與標準質量的差,絕對值越小,越接近標準。
6.倒數:乘積為1的兩個數互為倒數;
注意:0沒有倒數;若ab=1?a、b互為倒數;若ab=-1?a、b互為負倒數.
等于本身的數匯總:
相反數等于本身的數:0
倒數等于本身的數:1,-1
絕對值等于本身的數:正數和0
平方等于本身的數:0,1
立方等于本身的數:0,1,-1.
7.有理數加法法則:
(1)同號兩數相加,取相同的`符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大加數的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).
10有理數乘法法則:(1)兩數相乘,同號得正,異號得負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個因式都不為零,積的符號由負因式的個數決定.奇數個負數為負,偶數個負數為正。
11有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.(簡便運算)
12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.
13.有理數乘方的法則:(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;
14.乘方的定義:(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)a2是重要的非負數,即a2≥0;若a2+|b|=0?a=0,b=0;
(4)據規律底數的小數點移動一位,平方數的小數點移動二位.
15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.
16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.
17.混合運算法則:先乘方,后乘除,最后加減;注意:不省過程,不跳步驟。
18.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種 *** ,但不能用于證明.常用于填空,選擇。
高考數學常考知識點
一、三角函數
1.周期函數:一般地,對于函數f(x),如果存在一個不為0的常數T使得當x取定義域內的每一個值時,都有f(x+T)=f(x),那么函數f(x)就叫做周期函數,非零常數T叫做這個函數的周期,把所有周期中存在的最小正數,叫做最小正周期三角函數屬于高中數學中的重點內容,在高考理科數學中更是占據很重要的位置。
2.三角函數的圖像:可以利用三角函數線用幾何法作出,在精確度要求不高的情況下,常用五點法作圖,要特別注意“五點”的取法。
3.三角函數的定義域:三角函數的定義域是研究其他一切性質的前提,求三角函數的定義域實際上就是解最簡單的三角不等式,通常可用三角函數的圖像或三角函數線來求解,注意數形結合思想的應用。
二、反三角函數主要是三個:
y=arcsin(x),定義域[-1,1] ,值域[-π/2,π/2]圖象用紅色線條;
y=arccos(x),定義域[-1,1] , 值域[0,π],圖象用藍色線條;
y=arctan(x),定義域(-∞,+∞),值域(-π/2,π/2),圖象用綠色線條;
sin(arcsin x)=x,定義域[-1,1],值域 [-1,1] arcsin(-x)=-arcsinx
三、三角函數其他公式
arcsin(-x)=-arcsinx
arccos(-x)=π-arccosx
arctan(-x)=-arctanx
arccot(-x)=π-arccotx
arcsinx+arccosx=π/2=arctanx+arccotx
sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
當x∈[—π/2,π/2]時,有arcsin(sinx)=x
當x∈[0,π],arccos(cosx)=x
x∈(—π/2,π/2),arctan(tanx)=x
x∈(0,π),arccot(cotx)=x
x〉0,arctanx=π/2-arctan1/x,arccotx類似
若(arctanx+arctany)∈(—π/2,π/2),則arctanx+arctany=arctan(x+y/1-xy)
四、三角函數與平面向量的綜合問題
(1)巧妙“轉化”--把以“向量的數量積、平面向量共線、平面向量垂直”“向量的線性運算”形式出現的條件還其本來面目,轉化為“對應坐標乘積之間的關系”;
(2)巧挖“條件”--利用隱含條件”正弦函數、余弦函數、的有界性“,把不等式的恒成立問題轉化為含參數ψ的方程,求出參數ψ的值,從而可求函數的解析式;
(3)活用”性質“--活用正弦函數與余弦函數的單調性、對稱性、周期性、奇偶性,以及整體換元思想,即可求其對稱軸與單調區間。
五、見三角函數“對稱”問題,啟用圖象特征代數關系:(A≠0)
1.函數y=Asin(wx+φ)和函數y=Acos(wx+φ)的圖象,關于過最值點且平行于y軸的`直線分別成軸對稱;
2.函數y=Asin(wx+φ)和函數y=Acos(wx+φ)的圖象,關于其中間零點分別成中心對稱;
3.同樣,利用圖象也可以得到函數y=Atan(wx+φ)和函數y=Acot(wx+φ)的對稱性質。
高中數學重點知識點講解
直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α180°
高中數學重點知識點講解:直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。在高中數學里直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以后高中數學涉及到求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
高中數學重點知識點講解:直線方程
①點斜式:
直線斜率k,且過點
注意:高中數學在關于直線方程解法中,當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
⑤一般式:(A,B不全為0)
注意:○1各式的適用范圍
○2特殊的方程如:平行于x軸的直線:
(b為常數);平行于y軸的直線:
(a為常數);
高中數學知識點全總結最全版相關 文章 :
★ 高中數學知識點全總結最全版
★ 高中數學學習 *** :知識點總結最全版
★ 高中數學知識點總結及公式大全
★ 高中數學必考知識點歸納整理
★ 高中數學知識點總結及公式大全(4)
★ 高中數學知識點總結及公式大全(3)
★ 高三數學學習 *** 和技巧大全
★ 高一數學基礎知識學習 *** 歸納
★ 2020高一數學學習 *** 總結大全
★ 高一數學學習 *** 總結大全
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
跪求高中數學知識點總結
高中數學合集百度網盤下載
鏈接:
?pwd=1234
提取碼:1234
簡介:高中數學優質資料下載,包括:試題試卷、課件、教材、視頻、各大名師網校合集。
高中數學知識點大全
有的學生認為高中數學難做難做。其實高中數學整體上很簡單,很簡單,很多知識只要讀兩遍就可以了。下面是我整理的高中數學知識點大全,希望對你們有所幫助!
高中數學知識點
1、基本初等函數
指數、對數、冪函數三大函數的運算性質及圖像
函數的幾大要素和相關考點基本都在函數圖像上有所體現,單調性、增減性、極值、零點等等。關于這三大函數的運算公式,多記多用,多做一點練習,基本就沒問題。
函數圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函數圖像,定義域、值域、零點等等。對于冪函數還要搞清楚當指數冪大于一和小于一時圖像的不同及函數值的大小關系,這也是常考點。另外指數函數和對數函數的對立關系及其相互之間要怎樣轉化等問題,需要著重回看課本例題。
2、函數的應用
這一章主要考是函數與方程的結合,其實就是函數的零點,也就是函數圖像與X軸的交點。這三者之間的轉化關系是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關于證明零點的 *** ,直接計算加得必有零點,連續函數在x軸上方下方有定義則有零點等等,這些難點對應的證明 *** 都要記住,多練習。二次函數的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
3、空間幾何
三視圖和直觀圖的繪制不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想象。后面的錐體、柱體、臺體的表面積和體積,把公式記牢問題就不大。
4、點、直線、平面之間的位置關系
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規范性問題。
關于這一章的內容,牢記直線與直線、面與面、直線與 面相 交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在于二面角這個概念,大多同學即使知道有這個概念,也無法理解怎么在二面里面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什么捷徑可走。
5、圓與方程
能熟練地把一般式方程轉化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方后定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關系來判斷點與圓、直線與圓、圓與圓的位置關系。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
6、三角函數
考試必在這一塊出題,且題量不小!誘導公式和基本三角函數圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函數形函數的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恒等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
7、平面向量
向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。
8、三角恒等變換
這一章公式特別多,像差倍半角公式這類內容常會出現,所以必須要記牢。由于量比較大,記憶難度大,所以建議用紙寫好后貼在桌子上,天天都要看。要提一點,就是三角恒等變換是有一定規律的,記憶的時候可以 *** 三角函數去記。
9、解三角形
掌握正弦、余弦公式及其變式、推論、三角面積公式即可。
10、數列
等差、等比數列的通項公式、前n項及一些性質常出現于填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到后要帶有目的的去推導就沒問題了。
11、不等式
這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯系的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然后再根據實際問題的限制要求來求最值。
高中數學公式大全
乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b=-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1_X2=c/a 注:韋達定理
判別式
b2-4ac=0 注:方程有兩個相等的實根
b2-4ac0 注:方程有兩個不等的實根
b2-4ac0 注:方程沒有實根,有共軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑
余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角
圓的標準方程 (x-a)2+(y-b)2=r2 注:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0
拋物線標準方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱側面積 S=c_h 斜棱柱側面積 S=c'_h
正棱錐側面積 S=1/2c_h' 正棱臺側面積 S=1/2(c+c')h'
圓臺側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi_r2
圓柱側面積 S=c_h=2pi_h 圓錐側面積 S=1/2_c_l=pi_r_l
弧長公式 l=a_r a是圓心角的弧度數r 0 扇形面積公式 s=1/2_l_r
錐體體積公式 V=1/3_S_H 圓錐體體積公式 V=1/3_pi_r2h
斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s_h 圓柱體 V=pi_r2h
高考前數學知識點 總結
選擇填空題
1、易錯點歸納:
九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。
針對審題、解題思路不嚴謹如 *** 題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。
2、答題 *** :
選擇題十大速解 *** :
排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;
填空題四大速解 *** :直接法、特殊化法、數形結合法、等價轉化法。
解答題
專題一、三角變換與三角函數的性質問題
1、解題路線圖
①不同角化同角
②降冪擴角
③化f(x)=Asin(ωx+φ)+h
④結合性質求解。
2、構建答題模板
①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。
②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。
③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。
④ 反思 :反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。
專題二、解三角形問題
1、解題路線圖
(1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。
(2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。
2、構建答題模板
①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。
②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。
③求結果。
④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。
專題三、數列的通項、求和問題
1、解題路線圖
①先求某一項,或者找到數列的關系式。
②求通項公式。
③求數列和通式。
2、構建答題模板
①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。
②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。
③定 *** :根據數列表達式的結構特征確定求和 *** (如公式法、裂項相消法、錯位相減法、分組法等)。
④寫步驟:規范寫出求和步驟。
⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。
專題四、利用空間向量求角問題
1、解題路線圖
①建立坐標系,并用坐標來表示向量。
②空間向量的坐標運算。
③用向量工具求空間的角和距離。
2、構建答題模板
①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。
②寫坐標:建立空間直角坐標系,寫出特征點坐標。
③求向量:求直線的方向向量或平面的'法向量。
④求夾角:計算向量的夾角。
⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。
專題五、圓錐曲線中的范圍問題
1、解題路線圖
①設方程。
②解系數。
③得結論。
2、構建答題模板
①提關系:從題設條件中提取不等關系式。
②找函數:用一個變量表示目標變量,代入不等關系式。
③得范圍:通過求解含目標變量的不等式,得所求參數的范圍。
④再回顧:注意目標變量的范圍所受題中其他因素的制約。
專題六、解析幾何中的探索性問題
1、解題路線圖
①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)
②將上面的假設代入已知條件求解。
③得出結論。
2、構建答題模板
①先假定:假設結論成立。
②再推理:以假設結論成立為條件,進行推理求解。
③下結論:若推出合理結果, 經驗 證成立則肯。 定假設;若推出矛盾則否定假設。
④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。
專題七、離散型隨機變量的均值與方差
1、解題路線圖
(1)①標記事件;②對事件分解;③計算概率。
(2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。
2、構建答題模板
①定元:根據已知條件確定離散型隨機變量的取值。
②定性:明確每個隨機變量取值所對應的事件。
③定型:確定事件的概率模型和計算公式。
④計算:計算隨機變量取每一個值的概率。
⑤列表:列出分布列。
⑥求解:根據均值、方差公式求解其值。
專題八、函數的單調性、極值、最值問題
1、解題路線圖
(1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。
(2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。
2、構建答題模板
①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)
②解方程:解f′(x)=0,得方程的根
③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,并列出表格。
④得結論:從表格觀察f(x)的單調性、極值、最值等。
⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。
以上模板僅供參考,希望大家能針對自己的情況整理出來最適合的“套路”。
高中數學 學習心得
數學是一們基礎學科,我們從小就開始接觸到它。現在我們已經步入高中,由于高中數學對知識的難度、深度、廣度要求更高,有一部分同學由于不適應這種變化,數學成績總是不如人意。甚至產生這樣的困惑:“我在初中時數學成績很好,可現在怎么了?”其實,學習是一個不斷接收新知識的過程。正是由于你在進入高中后 學習 *** 或 學習態度 的影響,才會造成學得累死而成績不好的后果。那么,究竟該如何學好高中數學呢?以下我談談我的高中數學學習心得。
一、 認清學習的能力狀態。
1、 心理素質。我們在高中學習環境下取決于我們是否具有面對挫折、冷靜分析問題的辦法。當我們面對困難時不應產生畏懼感,面對失敗時不應灰心喪氣,而要勇于正視自己,及時作出總結教訓,改變學習 *** 。
2、 學習方式、習慣的反思與認識。(1) 學習的主動性。我們在進入高中以后,不能還像初中時那樣有很強的依賴心理,不訂 學習計劃 ,坐等上課,課前不預習,上課忙于記筆記而忽略了真正的聽課,顧此失彼,被動學習。(2) 學習的條理性。我們在每學習一課內容時,要學會將知識有條理地分為若干類,剖析概念的內涵外延,重點難點要突出。不要忙于記筆記,而對要點沒有聽清楚或聽不全。筆記記了一大摞,問題也有一大堆。如果還不能及時鞏固、總結,而忙于套著題型趕作業,對概念、定理、公式不能理解而死記硬背,則會事倍功半,收效甚微。(3) 忽視基礎。在我身邊,常有些“自我感覺良好”的同學,忽視基礎知識、基本技能和基本 *** ,不能牢牢地抓住課本,而是偏重于對難題的攻解,好高騖遠,重“量”而輕“質”,陷入題海,往往在考試中不是演算錯誤就是中途“卡殼”。(4) 不良習慣。主要有對答案,卷面書寫不工整,格式不規范,不相信自己的結論,缺乏對問題解決的信心和決心,遇到問題不能獨立思考,養成一種依賴于老師解說的心理,做作業不講究效率,學習效率不高。
二、 努力提高自己的學習能力。
1、 抓要點提高學習效率。(1) 抓教材處理。正所謂“萬變不離其中”。要知道,教材始終是我們學習的根本依據。教學是活的,思維也是活的,學習能力是隨著知識的積累而同時形成的。我們要通過老師教學,理解所學內容在教材中的地位,并將前后知識聯系起來,把握教材,才能掌握學習的主動性。(2) 抓問題暴露。對于那些典型的問題,必須及時解決,而不能把問題遺留下來,而要對遺留的問題及時、有效的解決。(3) 抓 思維訓練 。數學的特點是具有高度的抽象性、邏輯性和廣泛的適用性,對能力要求較高。我們在平時的訓練中,要注重一個思維的過程,學習能力是在不斷運用中才能培養出來的。(5) 抓45分鐘課堂效率。我們學習的大部分時間都在學校,如果不能很好地抓住課堂時間,而寄希望于課外去補,則會使學習效率大打折扣。
高中數學知識點大全相關 文章 :
★ 高二數學知識點總結
★ 高一數學必修一知識點匯總
★ 高中數學學習 *** :知識點總結最全版
★ 高中數學知識點總結
★ 高一數學知識點總結歸納
★ 高三數學知識點考點總結大全
★ 高中數學基礎知識大全
★ 高三數學知識點梳理匯總
★ 高中數學必考知識點歸納整理
★ 高一數學知識點總結期末必備
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();
高中數學知識點有哪些?
高中數學知識點如下:
1、判斷命題的真假關鍵是抓住關聯字詞。注意:不或即且,不且即或。
2、函數圖像與軸垂線至多一個公共點,但與軸垂線的公共點可能沒有,也可任意個。
3、數列的通項、數列項的項數,遞推公式與遞推數列,數列的通項與數列的前項和公式的關系。
4、兩數的等差中項惟一存在,在遇到三數或四數成等差數列時,常考慮選用“中項關系”轉化求解。
5、半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
測繪專業平差基礎需要的數學知識
測繪工程與數學關系聯系還是比較緊密的。。。高等數學,線性代數,概率論等都用得上,工程測量上常用些簡單的坐標計算(這里面就經常用到三角函數)那是最基本的,像有時用到些極坐標也得了解,如果深研究的話,工程測量及控制測量里很多公式都要有很強的數學功底才能弄懂的,還有像攝影測量,數字攝影測量里還涉及很多算法,非常復雜,測量平差里前面最主要的是先弄懂線性代數里的矩陣是怎么回事,一些性質及算法更好也了解一點,到后面還會用上概率論里的假設檢驗等知識。。。
總之,要想真正學好測繪工程,數學知識必須過關,望好好努力。。。
測繪數學知識點歸納高中的介紹就聊到這里吧,感謝你花時間閱讀本站內容,更多關于測繪基本知識要點、測繪數學知識點歸納高中的信息別忘了在本站進行查找喔。